

Rev 1.0 Jan 2015

Configuring a Modbus RTU Driver to work with Wattmon

Wattmon can interface with any 3rd party device over Modbus RTU on RS-485. The baud rate of the device needs to be set to the same as the Wattmon, the default being 9600 bps, 8 data bits, no parity and 1 stop bit. Wattmon can be configured at a different baud rate and parity but it will mean that Wattmon specific modules such as the C752 will not function so use this only if you are working exclusively with 3rd party devices. Setting the baud rate can be done from the devices page.

Mod	hue	Device	0				
wou	bus	Device	3				
Devices help	you collect	t data and control	outputs.			✓ More	Add 🔻 Options
							Refresh List
Device	List						Enable Automatic Refresh Disable Automatic Refresh
	ID	Name	Туре	Role		Status	Edit Communication Settin
-93	1	conext1	Conext-TL	Inverter Vab	Inverter 1 Vab (V)	Active	Action ~
v #				Inverter Vbc	Inverter 1 Vbc (V)		
				Inverter Vca	Inverter 1 Vca (V)		

Device page

In the communications page, you can change baud rate and parameters:

/ Communication Settings	
nunication Settings	
ttings lets you interface with nonstandard modbus equipment.	✓ More X Close
Settings	٢
9600	
Even Parity	
	V Communication Settings Dunication Settings ttings lets you interface with nonstandard modbus equipment. Settings 9600 No parity Deven Parity Odd Parity

Understanding Modbus RTU

Modbus RTU is a protocol that allows multiple slave devices to interface with a master device (Wattmon) over a 2-wire bus. Modbus devices respond to four different types of data:

Digital inputs/Discrete Input Contacts

These are single bits and typically used on devices that have switches or other types of contacts whose status needs to be read

Digital Outputs/Discrete Output Coils

These are typically used to control relays or other contact devices

Read Only Registers/Analog Input Registers

These are used to read system status from the modbus device. Each register has a specific address and value – refer to the documentation about the modbus device for a register map. Registers can be arranged in contiguous sequences or in groups of addresses – Wattmon drivers can handle single blocks or multiblock mode. Registers are 16 bits wide. However, often certain registers can be combined together to form 32-bit floating point or unsigned int values.

Read/Write Registers/Holding Registers

These are similar to read only registers, also 16-bits wide and with a unique address. However, these are accessed using a different function and allow values to be changed, making it possible to configure an external device over modbus.

Viewing Existing Devices

In the Control Panel, click Device Types to bring up the page as shown below:

	anel / Device Types			
Modbu	s Device Typ	es		
evices help you co	ollect data and control outputs.		✓ More + Crea	te Devic
Device Type	List			•
ID	Device Type	Name	Options	
0	2020	EASTRON Three Phase Power Meter		Edit
•	1001	C501 Current Sensor		Edit
2	1100	Current Sensor		Edit
3	1005	WattMon Relay		Edit
4	1101	AC 3 Phase Current Sensor		Edit
6	4055	ADAM 4055		Edit
6	4017	ADAM 4017		Edit

Device Types window

Each device in wattmon requires a unique device number – this is arbitrarily defined and should be in the range between 1000 and 3999. In order to edit an existing driver, click the Edit button in the list, or click Create Device to create a new device.

Configuring A Device Driver

The Configure device driver window has multiple sections. The steps will be defined in the following sections.

The *Device Driver Settings* page is shown below.

	Device Types / Configure Device Driver		
— Config	ure Device Driver: 2900		
Device Driver Configurat	on	✓ More Close	S Apply Chang
🖋 Device Driver Se	ttings		٢
Device Type ID	2900		
Device Name	Conext-TL		
Device Description	Schneider Conext-TL Inverter 20kW		
Number of Roles	15 \$		
Digital Input Count	0 0		
Digital Ouput Count	0 2		
Read-Only Register Count	0 2		
Read Only Register Block Type	● Single Block ○ Multiblock		
Read/Write Register Count	15 û		
lolding Register (R/W) Block Type	 ○ Single Block ● Multiblock 		

Device Driver Settings Page

Select a unique device type ID for your device or ignore this if editing a device. The Device Name is the short name shown in the device list.

The Device Description is a longer version of the name, keep it to less than 64 characters.

Leave the *Number of Roles*, *Digital Input Count*, *Digital Output Count*, *Read Only Register Count* and *Read/Write Register count* untouched – these values will automatically be modified as you add roles and registers in the sections below.

In the example above, a device driver for a Schneider Conext inverter was defined. 15 different roles for the corresponding holding registers was defined. The Read/Write registers are not in a contiguous block, so the Multiblock mode was selected. In this mode, you will need to enter the individual addresses of each register along with details.

When selecting Single block mode, you just need to enter the start address of the block in the field immediately below the selection.

Adding a register

The Conext modbus interface has no digital inputs, outputs or read-only registers, hence this is left blank:

Digital Input Registers			<u></u>
			Ad
Register Index	Register Name	Description	Options
Digital Output Registers			<u> </u>
Register Index	Register Name	Description	Ad
g			
Read Only Registers			<u>`</u>
Devictor Index	Desister Mene	Description	Ad
Register Index	Register Name	Description	Options

The following section (Read/Write registers) is filled up as shown below:

				A
Register Index	Register Address	Register Name	Description	Options
0	6136 6136	Inverter_vab	Inverter Vab	Action
1	6137	inverter_vbc	Inverter Vbc	Action
2	6138	Inverter_vca	Inverter Vca	Action
3	6139	phase_a_current	Phase A Current	Action
4	6140	phase_b_current	Phase B Current	Action
5	6141	phase_c_current	Phase C Current	Action
6	6142	real_power	Real Power Total	Action
7	6143	pv_voltage	PV1 Voltage	Action
8	6144	pv_current	PV1 Current	Action
9	6145	pv_power	PV1 Power	Action
10	6185	pv2_voltage	PV2 Voltage	Action
11	6186	pv2_current	PV2 Current	Action
12	6191	pv2_power	PV2 Power	Action
13	6129	active_power	Apparent Power	Action
14	6132	reactive_power	Reactive Power	Action

Add a new register by clicking the Add button. The first register (index 0) is in edit mode – this can be activated by clicking Action > Edit at the right of the row. The Register Address corresponds to the documentation provided by the manufacturer.

The Register name is a variable name to help you identify the variable. The Description is used when assigning a role to the register in the Device Manager.

Table 30 Mo	dbus map (Continued)			
Address (hex)	Description	Access	Units	Size
0x1702	Temperature 2, Boost module 1	Read Only	C/X10	INT16
0x1703	Temperature 3, Boost module 2	Read Only	C/X10	INT16
0x1704	Temperature 4, Inverter module	Read Only	C/X10	INT16
0x17F1	Apparent Power	Read Only	kVA/x10	UINT16
0x17F4	Reactive Power	Read Only	kVAr/X10	INT16
0x17F8	Inverter Vab	Read Only	Vrms/X10	INT16
0x17F9	Inverter Vbc	Read Only	Vrms/X10	INT16
0x17FA	Inverter Vca	Read Only	Vrms/X10	INT16
0x17FB	Phase A Current	Read Only	Arms/X10	INT16
0x17FC	Phase B Current	Read Only	Arms/X10	INT16
0x17FD	Phase C Current	Read Only	Arms/X10	INT16
0x17FE	Real Power (Total)	Read Only	kW/X10	INT16
0x17FF	PV1 Voltage	Read Only	V/X10	INT16
0x1800	PV1 Current	Read Only	A/X10	INT16
0x1801	PV1 Power	Read Only	kW/X10	INT16

Application Note - Using Modbus With Conext™ TL Inverters

Datasheet provided by manufacturer

As shown above, all this data is taken from the manufacturer data sheet. In this case all registers need to be divided by 10 to get the actual value – this will be done in the next section.

Once the registers are entered, proceed to the roles section and fill it in.

Creating Device Roles

Device roles are the variables that glue the device driver to the Wattmon system. These need to be linked in the Device Manager after adding the device to the system. Roles are variables linked to specific registers in the modbus driver.

CO DIIVO	er Configuration			✓ More C	lose 🗹 Apply Cha
					Ac
ole ID	Role Name	Role Type	Register Index	Role Scale	Options
0	inverter_vab	Holding Register (16-bit)	0 (inverter_vab)	10	Action
	inverter_vab	Holding Register (16-bit)	0	10	
1	inverter_vbc	Holding Register (16-bit)	1 (inverter_vbc)	10	Action
2	inverter_vca	Holding Register (16-bit)	2 (inverter_vca)	10	Action
3	phase_a_current	Holding Register (16-bit)	3 (phase_a_current)	10	Action
4	phase_b_current	Holding Register (16-bit)	4 (phase_b_current)	10	Action
5	phase_c_current	Holding Register (16-bit)	5 (phase_c_current)	10	Action
6	real_power	Holding Register (16-bit)	6 (real_power)	10	Action
7	pv_voltage	Holding Register (16-bit)	7 (pv_voltage)	10	Action
8	pv_current	Holding Register (16-bit)	8 (pv_current)	10	Action
9	pv_power	Holding Register (16-bit)	9 (pv_power)	10	Action
10	pv2_voltage	Holding Register (16-bit)	10 (pv2_voltage)	10	Action
11	pv2_current	Holding Register (16-bit)	11 (pv2_current)	10	Action
12	pv2_power	Holding Register (16-bit)	12 (pv2_power)	10	Action
13	apparent_power	Holding Register (16-bit)	13 (active_power)	10	Action
14	reactive_power	Holding Register (16-bit)	14 (reactive_power)	10	

Roles for Conext TL driver

Add a role by clicking the *Add* button. The image above shows the Schneider Conext roles defined. Roles can link to digital inputs, digital outputs, read only and holding registers. In the role name, give the role a unique name (use _ instead of spaces in the name). For special register types spanning multiple physical registers, select the role type. The available role types are:

Digital Input

This will require you to enter the index to the register in the Digital Input section. Select a scale value of 1 for no scaling, or enter a multiplier to divide the value by the multipler each time.

Digital output

This will point to the register index in the Digital Outputs section.

Read Only (16-bit)

In this case register_index will need to be set to the index of the register in the read only section. Set the scale value appropriately (in the example above a scale of 10 signified that the raw value will be divided by 10. If the voltage is 2305, the role value will be 230.5V)

Read Only Float (32-bit)

In this case register_index will need to be set to the index of the register in the read only section. This will automatically combine the register and the followin register into a 32-bit float. This assumes the float is big-endian.

Read Only Float Little Endian (32-bit)

In this case register_index will need to be set to the index of the register in the read only section. This will automatically combine the register and the followin register into a 32-bit float. This assumes the float is little-endian.

Read Only Unsigned Long Little Endian (32-bit)

In this case register_index will need to be set to the index of the register in the read only section. This will automatically combine the register and the following register into a 32-bit unsigned int – the first register (for example index 5) would be the lower value while index 6 would be the higher value.

Read Only Unsigned Long Big Endian (32-bit)

In this case register_index will need to be set to the index of the register in the read only section. This will automatically combine the register and the following register into a 32-bit unsigned int – the first register (for example index 5) would be the higher value while index 6 would be the lower value.

Read Only Signed Long Little Endian (32-bit)

In this case register_index will need to be set to the index of the register in the read only section. This will automatically combine the register and the following register into a 32-bit signed int – the first register (for example index 5) would be the lower value while index 6 would be the higher value.

Read Only Signed Long Big Endian (32-bit)

In this case register_index will need to be set to the index of the register in the read only section. This will automatically combine the register and the following register into a 32-bit signed int – the first register (for example index 5) would be the higher value while index 6 would be the lower value.

Holding Register (16-bit)

In this case register_index will need to be set to the index of the register in the read/write section. Set the scale value appropriately (in the example above a scale of 10 signified that the raw value will be divided by 10. If the voltage is 2305, the role value will be 230.5V)

Read/Write Float Big Endian (32-bit)

In this case register_index will need to be set to the index of the register in the read/write section. The registers are arranged as big-endian.

Read Write Register – UINT 32 bit big endian

In this case register_index will need to be set to the index of the register in the read/write section. This will create a single unsigned int from the register and the following register.

Adding the device to Wattmon

Once the device driver has been created and connected up physically (make sure each device has its own unique modbus ID), you will need to add it to Wattmon. To do so, go to the Devices page, and click Add > Manually Add a Device.

Home / Control Pan	el / Devices / Add Device	
Add New Devic	e	
Configure your devic	e here in order for it to be usable by WattMon.	✓ More
Device ID	6	
Device Name	Device2	
Device Type	Conext-TL (2900)	
Poll Interval (in ms)	1000 [•] Select •	
Status	Enabl() Disabled	
Update Settings		

Add a device page

Select the device ID of the device you wish to connect to. Enter a unique device name or leave the default name. Select the device driver you just created from the list of drivers. Click Update Settings to add the device to the list. If the device is properly functioning and your driver is set up right, you will see the Active status next to the device in the list. Otherwise it will show Error in red. You will then need to debug this to figure out where the problem lies.

1	conext1	Conext-TL	Inverter Vab	Inverter 1 Vab (V)	Active	Action -
			Inverter Vhc	Inverter 1 Vbc (V)		
D	evice is a	ictive				

Creating and assigning Roles

The final part of the device configuration involved creating or linking existing roles to your device driver. Go to Control Panel > Roles.

Home /	Control Panel / Roles				
-	Roles				
ystem	roies				✓ More + Add R
Ro	e List				٠
D	Role Name	Туре	Group	Devices	Options
1	Solar DC Input to Battery	Read Only Value	3	1001,1100,1002	Edit
2	Current Monitor: Charger Input to Battery	Read Only Value	2	1001,1100,1002	Edit
3	Bidirectional DC to Battery	Read Only Value	2	1001,1100,1002	Edit
4	Current Monitor: DC Output Only from Battery	Read Only Value	2	1001,1100,1002	Edit
5	Current Monitor: External Sensor 1 not conne	Digital Out	1	1001,1100	Edit
_					

A list of all roles in the system is shown. Either edit a role or create a new role, and assign it to the device driver as shown in the next section:

oles configuration		✓ More Close + Save As New
Role Settings		•
Role ID	-1	
Role Name	Voltage 1	
Display on dashboard	Yes	<u>-</u>
Group ID	Not grouped	
Role Type	Device: Read Only Value	<u>-</u>
Role Definition	Voltage	•
* Assign Role to I	Devices	٢
		Add
ID	Device	Options

Configuring a new role

.

The Role name should be unique and help you to identify the purpose of the role. In this example we are creating a role called Voltage 1. If you wish the variable to be displayed in the front end on the variables widget, select Yes in Display on Dashboard. If you are defining a current, voltage or wattage, you may wish to assign it to a data group in the Group Id field. For example, if you have multiple inverters feeding solar energy into the grid, and they all have a Wattage field indicating the energy being exported, you could assign the role to the Solar group. The sum of all watt energy will be consolidated and logged as total solar energy. Make sure to specify Watts in the Role difinition.

In the Role Type, select the role type (this is the same as what you defined in the device driver above) – this can be Digital Output, Digital Input, Read Only or Read/write for modbus devices. If you are creating a onewire device role (temperature sensor), select OneWire. If you are linking a global variable to a role, select Global variable.

In the section below, assign which devices can be linked to this role in the device edit page. You can assign one role to multiple device types.

Configuring the Device

Once you have created your roles, go back to the devices page and edit the device. You will now be able to assign the roles you created to the device.

Configure Roles				
Inverter Vab	Inverter 1 Vab (V)	•	Scale:10	Read/Write Register
Inverter Vbc	Inverter 1 Vbc (V)	•	Scale:10	Read/Write Register
Inverter Vca	Inverter 1 Vca (V)	•	Scale:10	Read/Write Register
Phase A Current	Inverter 1 Phase A Current (A)	•	Scale:10	Read/Write Register
Phase B Current	Inverter 1 Phase B Current (A)	•	Scale:10	Read/Write Register
Phase C Current	Inverter 1 Phase C Current (A)	•	Scale:10	Read/Write Register
Real Power Total	Inverter 1 Total Power (kW)	•	Scale:10	Read/Write Register
PV1 Voltage	PV1 Voltage	•	Scale:10	Read/Write Register
PV1 Current	PV1 Current	•	Scale:10	Read/Write Register
PV1 Power	Inverter 1 PV1 Power (kW)	•	Scale:10	Read/Write Register
PV2 Voltage	Inverter 1 PV2 Voltage	•	Scale:10	Read/Write Register
PV2 Current	Inverter 1 PV2 Current	•	Scale:10	Read/Write Register
PV2 Power	Inverter 1 PV2 Power	•	Scale:10	Read/Write Register
Apparent Power	Apparent Power Inverter 1	-	Scale:10	Read/Write Register
Reactive Power	Reactive Power Inverter 1	•	Scale:10	Read/Write Register

Configure the roles for the device

Now the device is fully operational. If you wish to log some or all of the values, you will need to add the roles to the data logs in the Data Collection page in Control Panel.

For more information, visit <u>http://www.wattmon.com</u> or email: wattmonsolar@gmail.com